Login / Signup

One-step purification and regulation of fructose 1,6-bisphosphatase from the liver of the freeze-tolerant wood frog, Rana sylvatica.

Anchal VarmaKenneth B Storey
Published in: Cell biochemistry and function (2022)
The wood frog (Rana sylvatica) undergoes numerous changes to its physiology and metabolic processes to survive the winter months, including adaptations that let them endure whole-body freezing. The regulation of key enzymes of central carbohydrate metabolism in the liver plays a crucial role in mediating the synthesis and maintenance of high concentrations of glucose as a cryoprotectant during freezing as well as glucose reconversion to glycogen after thawing. The present study characterized the regulation of fructose-1,6-bisphosphatase (FBPase; EC 3.1.3.11) from wood frog liver during freezing, FBPase being a crucial enzyme regulating gluconeogenesis. Liver FBPase was purified to homogeneity from control and frozen wood frogs by a one-step chromatographic process. Kinetic and regulatory parameters of the enzyme were investigated and demonstrated a significant decrease in sensitivity to its substrate fructose-1,6-bisphosphate in the liver of frozen frogs, as compared with controls. Immunoblotting also revealed freeze-responsive changes in posttranslational modifications with a significant decrease in serine phosphorylation (by 53%) for FBPase from frozen frogs. Taken together, these results suggest that FBPase is suppressed, and gluconeogenesis is inhibited during freezing. This response acts as an important component of the metabolic survival strategy of the wood frog.
Keyphrases
  • cell wall
  • transcription factor
  • drug delivery
  • single cell
  • cancer therapy
  • liquid chromatography
  • glycemic control