Login / Signup

A Matrix-Correction Approach to Estimate the Bioaccumulation Potential of Emerging PFASs.

Xiaowei SongRobin VestergrenYa-Li ShiYa-Qi Cai
Published in: Environmental science & technology (2020)
Recent studies employing high-resolution mass spectrometry have discovered numerous emerging per- and polyfluoroalkyl substances (PFASs) in the environment, but the lack of authentic standards for these contaminants hampers quantitative evaluation of hazard properties. Here, we tested a matrix-correction methodology for determining the bioaccumulation potential of emerging PFASs based on peak area in crucian carp from Xiaoqing river, China. Fortification experiments of emerging PFASs extracted from surface water and sediment samples demonstrated that the quantification bias in fish tissues was <34% for analytes detected in fish and water. Tissue distribution ratios (TBRs) and whole-body bioaccumulation factors (BAFs) were subsequently calculated by correcting for analyte- and tissue-specific matrix effects. A model evaluation set including seven reference PFASs demonstrated that peak area-based TBRs and BAFs were strongly correlated with those calculated from quantified concentrations (p < 0.05, adjusted r2 > 0.91, slope: 0.99-1.34). Among the detected substances, the trimer acid of hexafluoropropylene oxide and C9 monoether per- and polyfluoroalkyl ether carboxylic acid (PFECA) were identified as bioaccumulative substances. C8 PFECA and C8 monochlorine-substituted perfluoroalkyl carboxylic acid displayed similar BAFs value compared to perfluorooctanoic acid. Overall, the proposed methodology provides a rapid hazard screening tool that could be used to assess emerging contaminants without access to authentic standards.
Keyphrases