Login / Signup

Efficiency Improvement Using Molybdenum Disulphide Interlayers in Single-Wall Carbon Nanotube/Silicon Solar Cells.

Shaykha AlzahlyLePing YuCameron J ShearerChristopher T GibsonJoseph G Shapter
Published in: Materials (Basel, Switzerland) (2018)
Molybdenum disulphide (MoS₂) is one of the most studied and widely applied nanomaterials from the layered transition-metal dichalcogenides (TMDs) semiconductor family. MoS₂ has a large carrier diffusion length and a high carrier mobility. Combining a layered structure of single-wall carbon nanotube (SWCNT) and MoS₂ with n-type silicon (n-Si) provided novel SWCNT/n-Si photovoltaic devices. The solar cell has a layered structure with Si covered first by a thin layer of MoS₂ flakes and then a SWCNT film. The films were examined using scanning electron microscopy, atomic force microscopy and Raman spectroscopy. The MoS₂ flake thickness ranged from 5 to 90 nm while the nanosheet’s lateral dimensions size ranged up to 1 μm². This insertion of MoS₂ improved the photoconversion efficiency (PCE) of the SWCNT/n-Si solar cells by approximately a factor of 2.
Keyphrases