Login / Signup

Releasing small ejaculates slowly increases per-gamete fertilization success in an external fertilizer: Galeolaria caespitosa (Polychaeta: Serpulidae).

Colin OlitoDustin J Marshall
Published in: Journal of evolutionary biology (2018)
The idea that male reproductive strategies evolve primarily in response to sperm competition is almost axiomatic in evolutionary biology. However, externally fertilizing species, especially broadcast spawners, represent a large and taxonomically diverse group that have long challenged predictions from sperm competition theory-broadcast spawning males often release sperm slowly, with weak resource-dependent allocation to ejaculates despite massive investment in gonads. One possible explanation for these counter-intuitive patterns is that male broadcast spawners experience strong natural selection from the external environment during sperm dispersal. Using a manipulative experiment, we examine how male reproductive success in the absence of sperm competition varies with ejaculate size and rate of sperm release, in the broadcast spawning marine invertebrate Galeolaria caespitosa (Polychaeta: Serpulidae). We find that the benefits of Fast or Slow sperm release depend strongly on ejaculate size, but also that the per-gamete fertilization rate decreases precipitously with ejaculate size. Overall, these results suggest that, if males can facultatively adjust ejaculate size, they should slowly release small amounts of sperm. Recent theory for broadcast spawners predicts that sperm competition can also select for Slow release rates. Taken together, our results and theory suggest that selection often favours Slow ejaculate release rates whether males experience sperm competition or not.
Keyphrases
  • gene expression