Determination of Characteristic vs Anomalous 135Cs/137Cs Isotopic Ratios in Radioactively Contaminated Environmental Samples.
Dorian ZokTobias BlenkeSandra ReinhardSascha SprottFelix KeglerLuisa SyrbeRebecca QuerfeldYoshitaka TakagaiVladyslav DrozdovIhor ChyzhevskyiSerhii KirieievBrigitte SchmidtWolfram AdlassnigGabriele WallnerSergiy DubchakGeorg SteinhauserPublished in: Environmental science & technology (2021)
A contamination with the ubiquitous radioactive fission product 137Cs cannot be assigned per se to its source. We used environmental samples with varying contamination levels from various parts of the world to establish their characteristic 135Cs/137Cs isotope ratios and thereby allow their distinction. The samples included biological materials from Chernobyl and Fukushima, historic ashed human lung tissue from the 1960s from Austria, and trinitite from the Trinity Test Site, USA. After chemical separation and gas reaction shifts inside a triple quadrupole ICP mass spectrometer, characteristic 135Cs/137Cs isotope signatures (all as per March 11, 2011) were obtained for Fukushima- (∼0.35) and Chernobyl-derived (∼0.50) contaminations, in agreement with the literature for these contamination sources. Both signatures clearly distinguish from the characteristic high ratio (1.9 ± 0.2) for nuclear-weapon-produced radiocesium found in human lung tissue. Trinitite samples exhibited an unexpected, anomalous pattern by displaying a low (<0.4) and nonuniform 135Cs/137Cs ratio. This exemplifies a 137Cs-rich fractionation of the plume in a nuclear explosion, where 137Cs is a predominant species in the fireball. The onset of 135Cs was delayed because of the longer half-life of its parent nuclide 135Xe, causing a spatial separation of gaseous 135Xe from condensed 137Cs, which is the reason for the atypical 135Cs/137Cs fractionation in the fallout at the test site.