Login / Signup

Divergent respiratory and cardiovascular responses to hypoxia in bar-headed geese and Andean birds.

Sabine L LagueBeverly ChuaLuis AlzaGraham R ScottPeter B FrappellYang ZhongAnthony P FarrellKevin G McCrackenYuxiang WangWilliam K Milsom
Published in: The Journal of experimental biology (2018)
Many high-altitude vertebrates have evolved increased capacities in their oxygen transport cascade (ventilation, pulmonary diffusion, circulation and tissue diffusion), enhancing oxygen transfer from the atmosphere to mitochondria. However, the extent of interspecies variation in the control processes that dictate hypoxia responses remains largely unknown. We compared the metabolic, cardiovascular and respiratory responses to progressive decreases in inspired oxygen levels of bar-headed geese (Anser indicus), birds that biannually migrate across the Himalayan mountains, with those of Andean geese (Chloephaga melanoptera) and crested ducks (Lophonetta specularioides), lifelong residents of the high Andes. We show that Andean geese and crested ducks have evolved fundamentally different mechanisms for maintaining oxygen supply during low oxygen (hypoxia) from those of bar-headed geese. Bar-headed geese respond to hypoxia with robust increases in ventilation and heart rate, whereas Andean species increase lung oxygen extraction and cardiac stroke volume. We propose that transient high-altitude performance has favoured the evolution of robust convective oxygen transport recruitment in hypoxia, whereas life-long high-altitude residency has favoured the evolution of structural enhancements to the lungs and heart that increase lung diffusion and stroke volume.
Keyphrases
  • heart rate
  • endothelial cells
  • atrial fibrillation
  • blood pressure
  • multiple sclerosis
  • left ventricular
  • pulmonary hypertension
  • cell death
  • intensive care unit
  • endoplasmic reticulum
  • emergency medicine