Login / Signup

Fine-Tuning the Energy Levels of a Nonfullerene Small-Molecule Acceptor to Achieve a High Short-Circuit Current and a Power Conversion Efficiency over 12% in Organic Solar Cells.

Bin KanJiangbin ZhangFeng LiuXiangjian WanChenxi LiXin KeYunchuang WangHuanran FengYamin ZhangGuankui LongRichard H FriendArtem A BakulinYongsheng Chen
Published in: Advanced materials (Deerfield Beach, Fla.) (2017)
Organic solar cell optimization requires careful balancing of current-voltage output of the materials system. Here, such optimization using ultrafast spectroscopy as a tool to optimize the material bandgap without altering ultrafast photophysics is reported. A new acceptor-donor-acceptor (A-D-A)-type small-molecule acceptor NCBDT is designed by modification of the D and A units of NFBDT. Compared to NFBDT, NCBDT exhibits upshifted highest occupied molecular orbital (HOMO) energy level mainly due to the additional octyl on the D unit and downshifted lowest unoccupied molecular orbital (LUMO) energy level due to the fluorination of A units. NCBDT has a low optical bandgap of 1.45 eV which extends the absorption range toward near-IR region, down to ≈860 nm. However, the 60 meV lowered LUMO level of NCBDT hardly changes the Voc level, and the elevation of the NCBDT HOMO does not have a substantial influence on the photophysics of the materials. Thus, for both NCBDT- and NFBDT-based systems, an unusually slow (≈400 ps) but ultimately efficient charge generation mediated by interfacial charge-pair states is observed, followed by effective charge extraction. As a result, the PBDB-T:NCBDT devices demonstrate an impressive power conversion efficiency over 12%-among the best for solution-processed organic solar cells.
Keyphrases
  • solar cells
  • small molecule
  • high resolution
  • single molecule
  • stem cells
  • protein protein
  • cell therapy
  • photodynamic therapy
  • single cell
  • molecular dynamics simulations
  • light emitting