Login / Signup

Highly Transparent, Flexible, and Mechanically Strong Nanopapers of Cellulose Nanofibers @Metal-Organic Frameworks.

Shengyang ZhouMaria StrømmeChao Xu
Published in: Chemistry (Weinheim an der Bergstrasse, Germany) (2019)
Freestanding nanopapers were fabricated by the assembly of metal-organic frameworks (MOFs) onto cellulose nanofibers (CNFs). The CNFs are wrapped by continuously nucleated MOF layers (CNF@MOF) by interfacial synthesis, with the charge density on the surface of the CNFs and the dosage of the surfactant polyvinylpyrrolidone (PVP) being carefully adjusted. The obtained CNF@MOF nanofibers with long-range, continuous, hybrid nanostructures were very different to the composites formed by aggregation of MOF nanoparticles on the substrates. Four typical MOFs (HKUST-1, Al-MIL-53, Zn-MOF-74, ZIF-CO3 -1) were successfully grown onto CNFs in aqueous solutions and further fabricated into freestanding nanopapers. Because of their unique nanostructures and morphologies, the corresponding flexible nanopapers exhibit hierarchical meso-micropores, high optical transparency, high thermal stability, and high mechanical strength. A proof-of-concept study shows that the CNF@MOF nanopapers can be used as efficient filters to separate volatile organic compounds (VOCs) from the air. This work provides a new path for structuring MOF materials that may boost their practical application.
Keyphrases
  • metal organic framework
  • ionic liquid
  • heavy metals
  • cord blood
  • molecular dynamics simulations