Login / Signup

Topological Crystalline Insulator SnTe/Si Vertical Heterostructure Photodetectors for High-Performance Near-Infrared Detection.

Hongbin ZhangBaoyuan ManQi Zhang
Published in: ACS applied materials & interfaces (2017)
Due to the gapless surface state and narrow bulk band gap, the light absorption of topological crystalline insulators covers a broad spectrum ranging from terahertz to infrared, revealing promising applications in new generation optoelectronic devices. To date, the photodetectors based on topological insulators generally suffer from a large dark current and a weaker photocurrent especially under the near-infrared lights, which severely limits the practical application of devices. Owing to the lower excitation energy of infrared lights, the photodetection application of topological crystalline insulators in the near-infrared region relies critically on understanding the preparation and properties of their heterostructures. Herein, we fabricate the high-quality topological crystalline insulator SnTe film/Si vertical heterostructure by a simple physical vapor deposition process. The resultant heterostructure exhibits an excellent diode characteristic, enabling the construction of high-performance near-infrared photodetectors. The built-in electric field at SnTe/Si interface enhances the absorption efficiency of near-infrared lights and greatly facilitates the separation of photogenerated carriers, making the device capable of operating as a self-driven photodetector. The as-grown SnTe film acts as the hole transport layer in heterostructure photodetectors, promoting the transport of holes to electrode and reducing electron-hole recombination effectively. These merits enable the SnTe/Si heterostructure photodetector to have a high responsivity of 2.36 AW-1, a high detectivity of 1.54 × 1014 Jones, and a large bandwidth of 104 Hz in the near-infrared wavelength, which makes the detector have a promising market in novel device applications.
Keyphrases
  • room temperature
  • ionic liquid
  • solar cells
  • health insurance
  • physical activity
  • oxidative stress
  • dna damage
  • molecularly imprinted
  • mass spectrometry
  • real time pcr
  • solid state
  • energy transfer
  • contrast enhanced