Login / Signup

4K-memristor analog-grade passive crossbar circuit.

Hyungjin KimM R MahmoodiH NiliD B Strukov
Published in: Nature communications (2021)
The superior density of passive analog-grade memristive crossbar circuits enables storing large neural network models directly on specialized neuromorphic chips to avoid costly off-chip communication. To ensure efficient use of such circuits in neuromorphic systems, memristor variations must be substantially lower than those of active memory devices. Here we report a 64 × 64 passive crossbar circuit with ~99% functional nonvolatile metal-oxide memristors. The fabrication technology is based on a foundry-compatible process with etch-down patterning and a low-temperature budget. The achieved <26% coefficient of variance in memristor switching voltages is sufficient for programming a 4K-pixel gray-scale pattern with a <4% relative tuning error on average. Analog properties are also successfully verified via experimental demonstration of a 64 × 10 vector-by-matrix multiplication with an average 1% relative conductance import accuracy to model the MNIST image classification by ex-situ trained single-layer perceptron, and modeling of a large-scale multilayer perceptron classifier based on more advanced conductance tuning algorithm.
Keyphrases
  • neural network
  • deep learning
  • machine learning
  • palliative care
  • working memory
  • magnetic resonance imaging
  • computed tomography
  • circulating tumor cells
  • diffusion weighted imaging
  • high intensity
  • tissue engineering