Login / Signup

Vibrational predissociation of the phenol-water dimer: a view from the water.

Daniel KwasniewskiMitchell ButlerHanna Reisler
Published in: Physical chemistry chemical physics : PCCP (2018)
The vibrational predissociation (VP) dynamics of the phenol-water (PhOH-H2O) dimer were studied by detecting H2O fragments and using velocity map imaging (VMI) to infer the internal energy distributions of PhOH cofragments, pair-correlated with selected rotational levels of the H2O fragments. Following infrared (IR) laser excitation of the hydrogen-bonded OH stretch fundamental of PhOH (Pathway 1) or the asymmetric OH stretch localized on H2O (Pathway 2), dissociation to H2O + PhOH was observed. H2O fragments were monitored state-selectively by using 2+1 Resonance-Enhanced Multiphoton Ionization (REMPI) combined with time-of-flight mass spectrometry (TOF-MS). VMI of H2O in selected rotational levels was used to derive center-of-mass (c.m.) translational energy (ET) distributions. The pair-correlated internal energy distributions of the PhOH cofragments derived via Pathway 1 were well described by a statistical prior distribution. On the other hand, the corresponding distributions obtained via Pathway 2 show a propensity to populate higher-energy rovibrational levels of PhOH than expected from a statistical distribution and agree better with an energy-gap model. The REMPI spectra of the H2O fragments from both pathways could be fit by Boltzmann plots truncated at the maximum allowed energy, with a higher temperature for Pathway 2 than that for Pathway 1. We conclude that the VP dynamics depends on the OH stretch level initially excited.
Keyphrases
  • energy transfer
  • high resolution
  • quantum dots
  • photodynamic therapy
  • monte carlo
  • blood flow
  • molecular dynamics