Aqueous Zinc-Iodine Pouch Cells with Long Cycling Life and Low Self-Discharge.
Han WuJunnan HaoShaojian ZhangYunling JiangYilong ZhuJiahao LiuKenneth DaveyShi-Zhang QiaoPublished in: Journal of the American Chemical Society (2024)
Aqueous zinc batteries are practically promising for large-scale energy storage because of cost-effectiveness and safety. However, application is limited because of an absence of economical electrolytes to stabilize both the cathode and anode. Here, we report a facile method for advanced zinc-iodine batteries via addition of a trace imidazolium-based additive to a cost-effective zinc sulfate electrolyte, which bonds with polyiodides to boost anti-self-discharge performance and cycling stability. Additive aggregation at the cathode improves the rate capacity by boosting the I 2 conversion kinetics. Also, the introduced additive enhances the reversibility of the zinc anode by adjusting Zn 2+ deposition. The zinc-iodine pouch cell, therefore, exhibits industrial-level performance evidenced by a ∼99.98% Coulombic efficiency under ca. 0.4C, a significantly low self-discharge rate with 11.7% capacity loss per month, a long lifespan with 88.3% of initial capacity after 5000 cycles at a 68.3% zinc depth-of-discharge, and fast-charging of ca. 6.7C at a high active-mass loading >15 mg cm -2 . Highly significant is that this self-discharge surpasses commercial nickel-metal hydride batteries and is comparable with commercial lead-acid batteries, together with the fact that the lifespan is over 10 times greater than reported works, and the fast-charging performance is better than commercial lithium-ion batteries.