Login / Signup

Linking spatial self-organization to community assembly and biodiversity.

Bidesh K BeraOmer TzukJamie J R BennettEhud Meron
Published in: eLife (2021)
Temporal shifts to drier climates impose environmental stresses on plant communities that may result in community reassembly and threatened ecosystem services, but also may trigger self-organization in spatial patterns of biota and resources, which act to relax these stresses. The complex relationships between these counteracting processes - community reassembly and spatial self-organization - have hardly been studied. Using a spatio-temporal model of dryland plant communities and a trait-based approach, we study the response of such communities to increasing water-deficit stress. We first show that spatial patterning acts to reverse shifts from fast-growing species to stress-tolerant species, as well as to reverse functional-diversity loss. We then show that spatial self-organization buffers the impact of further stress on community structure. Finally, we identify multistability ranges of uniform and patterned community states and use them to propose forms of non-uniform ecosystem management that integrate the need for provisioning ecosystem services with the need to preserve community structure.
Keyphrases
  • healthcare
  • mental health
  • climate change
  • human health
  • primary care
  • stress induced
  • risk assessment
  • gene expression
  • dna methylation