Magnetically Stimulated Integrin Binding Alters Cell Polarity and Affects Epithelial-Mesenchymal Plasticity in Metastatic Cancer Cells.
Yu Jin KimDae Beom LeeEunjin JeongJoo Yeong JeonHee-Dae KimHeemin KangYoung Keun KimPublished in: ACS applied materials & interfaces (2024)
Inorganic nanoparticles (NPs) have been widely recognized for their stability and biocompatibility, leading to their widespread use in biomedical applications. Our study introduces a novel approach that harnesses inorganic magnetic nanoparticles (MNPs) to stimulate apical-basal polarity and induce epithelial traits in cancer cells, targeting the hybrid epithelial/mesenchymal (E/M) state often linked to metastasis. We employed mesocrystalline iron oxide MNPs to apply an external magnetic field, disrupting normal cell polarity and simulating an artificial cellular environment. These led to noticeable changes in the cell shape and function, signaling a shift toward the hybrid E/M state. Our research suggests that apical-basal stimulation in cells through MNPs can effectively modulate key cellular markers associated with both epithelial and mesenchymal states without compromising the structural properties typical of mesenchymal cells. These insights advance our understanding of how cells respond to physical cues and pave the way for novel cancer treatment strategies. We anticipate that further research and validation will be instrumental in exploring the full potential of these findings in clinical applications, ensuring their safety and efficacy.