Login / Signup

Improving the Accuracy of Composite Methods: A G4MP2 Method with G4-like Accuracy and Implications for Machine Learning.

Naveen K DanduRajeev S AssaryPaul C RedfernLogan WardIan FosterLarry A Curtiss
Published in: The journal of physical chemistry. A (2022)
G4MP2 theory has proven to be a reliable and accurate quantum chemical composite method for the calculation of molecular energies using an approximation based on second-order perturbation theory to lower computational costs compared to G4 theory. However, it has been found to have significantly increased errors when applied to larger organic molecules with 10 or more nonhydrogen atoms. We report here on an investigation of the cause of the failure of G4MP2 theory for such larger molecules. One source of error is found to be the "higher-level correction (HLC)", which is meant to correct for deficiencies in correlation contributions to the calculated energies. This is because the HLC assumes that the contribution is independent of the element and the type of bonding involved, both of which become more important with larger molecules. We address this problem by adding an atom-specific correction, dependent on atom type but not bond type, to the higher-level correction. We find that a G4MP2 method that incorporates this modification of the higher-level correction, referred to as G4MP2A, becomes as accurate as G4 theory (for computing enthalpies of formation) for a test set of molecules with less than 10 nonhydrogen atoms as well as a set with 10-14 such atoms, the set of molecules considered here, with a much lower computational cost. The G4MP2A method is also found to significantly improve ionization potentials and electron affinities. Finally, we implemented the G4MP2A energies in a machine learning method to predict molecular energies.
Keyphrases
  • machine learning
  • density functional theory
  • molecular dynamics
  • high resolution
  • single molecule
  • mass spectrometry