PHD2 safeguards modest mesendoderm development.
Meng LiHuaizhang JinYun ZhaoGuoping ZhuYu LiuHongan LongXiaopeng ShenPublished in: Communications biology (2024)
PHD2 is essential in modulating HIF-1α levels upon oxygen fluctuations. Hypoxia, a hallmark of uterus, and HIF-1α have recently emerged as opposing regulators of mesendoderm specification, suggesting a role for PHD2 therein. We found that PHD2 expression initially covered the epiblast and gradually receded from the primitive streak, which was identical to hypoxia and exclusive to HIF-1α. The investigations performed in mESCs, embryoids, and mouse embryos together demonstrated that PHD2 negatively regulated mesendoderm specification. Single-cell RNA sequencing revealed that PHD2 governed the transition from epiblast to mesendoderm. The downstream effect of PHD2 relied on the HIF-1α regulated Wnt/β-catenin pathway, while it was regulated upstream by miR-429. In summary, our research highlights PHD2's essential role in mesendoderm specification and its interactions with hypoxia and HIF-1α.