Login / Signup

Prospection of potential actions during visual working memory starts early, is flexible, and predicts behavior.

Rose NasrawiSage E P BoettcherFreek van Ede
Published in: The Journal of neuroscience : the official journal of the Society for Neuroscience (2023)
For visual working memory to serve upcoming behavior, it is crucial that we prepare for the potential use of working-memory contents ahead of time. Recent studies have demonstrated how the prospection and planning for an upcoming manual action starts early after visual encoding, and occurs alongside visual retention. Here, we address whether such 'output planning' in visual working memory flexibly adapts to different visual-motor mappings, and occurs even when an upcoming action will only potentially become relevant for behavior. Human participants (female and male) performed a visual-motor working memory task in which they remembered one or two colored oriented bars for later (potential) use. We linked, and counterbalanced, the tilt of the visual items to specific manual responses. This allowed us to track planning of upcoming behavior through contralateral attenuation of beta-band activity - a canonical motor-cortical EEG signature of manual-action planning. The results revealed how action encoding and subsequent planning alongside visual working memory (1) reflect anticipated task demands rather than specific visual-motor mappings, (2) occur even for actions that will only potentially become relevant for behavior, and (3) are associated with faster performance for the encoded item, at the expense of performance to other working-memory content. This reveals how the potential prospective use of visual working memory content is flexibly planned early on, with consequences for the speed of memory-guided behavior. Significance Statement It is increasingly studied how visual working memory helps us to prepare for the future, in addition to how it helps us to hold onto the past. Recent studies have demonstrated that the planning of prospective actions occurs alongside encoding and retention in working memory. We show that such early "output planning" flexibly adapts to varying visual-motor mappings, occurs both for certain and potential actions, and predicts ensuing working-memory guided behavior. These results highlight the flexible and future-oriented nature of visual working memory, and provide insight into the neural basis of the anticipatory dynamics that translate visual representations into adaptive upcoming behavior.
Keyphrases
  • working memory
  • transcranial direct current stimulation
  • attention deficit hyperactivity disorder
  • functional connectivity
  • current status