Secondary Structure Stabilization of Macrocyclic Antimicrobial Peptides via Cross-Link Swapping.
Nauman NazeerNavjote KoonerAnupama GhimireJan K RaineyWilliam D LubellDeniz Meneksedag-ErolMarya AhmedPublished in: Journal of medicinal chemistry (2024)
Lactam cross-links have been employed to stabilize the helical secondary structure and enhance the activity and physiological stability of antimicrobial peptides; however, stabilization of β-sheets via lactamization has not been observed. In the present study, lactams between the side chains of C- and N-terminal residues have been used to stabilize the β-sheet conformation in a short ten-residue analogue of chicken angiogenin-4. Designed using a combination of molecular dynamics simulations and Markov state models, the lactam cross-linked peptides are shown to adopt stabilized β-sheet conformations consistent with simulated structures. Replacement of the peptide side-chain Cys-Cys disulfide by a lactam cross-link enhanced the broad-spectrum antibacterial activity compared to the parent peptide and exhibited greater propensity to induce proinflammatory activity in macrophages. The combination of molecular simulations and conformational and biological analyses of the synthetic peptides provides a useful paradigm for the rational design of therapeutically active peptides with constrained β-sheet structures.