Login / Signup

In Situ Monitoring of Collision and Recollision Events of Single Attoliter Droplets via Single-Entity Electrochemistry.

Heekyung ParkJun Hui Park
Published in: The journal of physical chemistry letters (2020)
We describe a simple method for real-time observation of collision and recollision behavior of a single aqueous attoliter droplet in an organic solvent through single-entity electrochemistry. The dynamics and morphology of the droplet after the collision event at the Au ultramicroelectrode (Au-UME) were monitored by consecutive cyclic voltammetry and amperometric current-time measurements. By sequentially applying oxidative potential and reductive potential at the Au-UME in the presence of attoliter droplets containing reversible redox species (e.g., ferrocyanide), we successfully detected the oxidative collision spike and its reductive recollision spike successively owing to the reversible redox reactions inside the droplet. Because the redox species was dissolved in a reduced form, the reductive collision spikes observed are the direct evidence that the water droplets colliding at the electrode surface are detached after the oxidation reaction. The collided droplet properties, such as size change and contact area, are also investigated and discussed.
Keyphrases