Login / Signup

Phylotranscriptomic analyses of mycoheterotrophic monocots show a continuum of convergent evolutionary changes in expressed nuclear genes from three independent nonphotosynthetic lineages.

Prakash Raj TimilsenaCraig F BarrettAlma Piñeyro NelsonEric K WafulaSaravanaraj AyyampalayamJoel R McNealTomohisa YukawaThomas J GivnishSean W GrahamJ Chris PiresJerrold I DavisCécile AnéDennis W StevensonJames H Leebens-MackEsteban Martínez-SalasElena R Álvarez-BuyllaClaude W dePamphilis
Published in: Genome biology and evolution (2022)
Mycoheterotrophy is an alternative nutritional strategy whereby plants obtain sugars and other nutrients from soil fungi. Mycoheterotrophy and associated loss of photosynthesis has evolved repeatedly in plants, particularly in monocots. Although reductive evolution of plastomes in mycoheterotrophs is well documented, the dynamics of nuclear genome evolution remains largely unknown. Transcriptome datasets were generated from four mycoheterotrophs in three families (Orchidaceae, Burmanniaceae, Triuridaceae) and related green plants, and used for phylogenomic analyses to resolve relationships among the mycoheterotrophs, their relatives, and representatives across the monocots. 602-gene phylogenies were mostly congruent with plastome phylogenies, except for an Asparagales + Liliales clade inferred in the nuclear trees. Reduction and loss of chlorophyll synthesis and photosynthetic gene expression, and relaxation of purifying selection on retained genes was progressive, with greater loss in older nonphotosynthetic lineages. 174 of 1375 plant benchmark universally conserved orthologous (BUSCO) genes were undetected in any mycoheterotroph transcriptome or the genome of the mycoheterotrophic orchid Gastrodia, but were expressed in green relatives, providing evidence for massively convergent gene loss in nonphotosynthetic lineages. We designate this set of deleted or undetected genes Missing in Mycoheterotrophs (MIM). MIM genes encode mainly photosynthetic or plastid membrane proteins, but also a diverse set of plastid processes, genes of unknown function, mitochondrial, and cellular processes. Transcription of a photosystem II gene (psb29) in all lineages implies a nonphotosynthetic function for this and other genes retained in mycoheterotrophs. Nonphotosynthetic plants enable novel insights into gene function as well as gene expression shifts, gene loss, and convergence in nuclear genomes.
Keyphrases