Login / Signup

Achieving Accurate Standard Protein-Protein Binding Free Energy Calculations through the Geometrical Route and Ergodic Sampling.

Haohao FuChristophe J ChipotXueguang ShaoWensheng Cai
Published in: Journal of chemical information and modeling (2023)
A new strategy for the prediction of binding free energies of protein-protein complexes is reported in the present article. By combining an ergodic-sampling algorithm with the so-called "geometrical route", which introduces a series of geometrical restraints as a preamble to the physical separation of the two partners, we achieve accurate binding free energy calculations for medium-sized protein-protein complexes within the microsecond timescale. The ergodic-sampling algorithm, namely, Gaussian-accelerated molecular dynamics (GaMD), implicitly helps explore the conformational change of the two binding partners as they associate reversibly by raising the energy wells. Therefore, independent simulations capturing the isomerization of proteins are no longer needed, reducing both the computational cost and human effort. Numerical applications indicate errors on the order of 0.1 kcal/mol for the Abl-SH3 domain binding a decapeptide, of 2.6 kcal/mol for the barnase-barstar complex, and of 0.2 kcal/mol for human leukocyte elastase binding the third domain of the turkey ovomucoid inhibitor. Compared with the classical geometrical route, which resorts to collective variables to describe the isomerization of proteins, our new strategy possesses remarkable convergence properties and robustness for protein-protein complexes owing to improved ergodic sampling. We are confident that the strategy presented in this study will have a broad range of applications, helping us understand recognition-association phenomena in the areas of physical, biological, and medicinal chemistry.
Keyphrases