Login / Signup

Triple-Channel Charge Transfer over W18O49/Au/g-C3N4 Z-Scheme Photocatalysts for Achieving Broad-Spectrum Solar Hydrogen Production.

Inju HongYi-An ChenYung-Jung HsuKijung Yong
Published in: ACS applied materials & interfaces (2021)
Z-scheme heterojunctions are fundamentally promising yet practically appealing for photocatalytic hydrogen (H2) production owing to the enhanced redox power, spatial separation of charge carriers, and broad-spectrum solar light harvesting. The charge-transfer dynamics at Z-scheme heterojunctions can be accelerated by inserting charge-transfer mediators at the heterojunction interfaces. In this study, we introduce Au nanoparticle mediators in the Z-scheme W18O49/g-C3N4 heterostructure, which enables an improved H2 production rate of 3465 μmol/g·h compared with the direct Z-scheme W18O49/g-C3N4 (1785 μmol/g·h) under 1 sun irradiation. The apparent quantum yields of H2 production with W18O49/Au/g-C3N4 are 3.9% and 9.3% at 420 and 1200 nm, respectively. The improved photocatalytic H2 production activity of W18O49/Au/g-C3N4 is attributable to the triple-channel charge-transfer mechanism: channel I─Z-scheme charge transfer facilitates charge separation and increased redox power of the photoexcited electrons; channels II and III─the localized surface plasmon resonances from Au (channel II) and W18O49 (channel III) enable light harvesting extension from visible to near-infrared wavelengths.
Keyphrases
  • visible light
  • sensitive detection
  • magnetic resonance
  • computed tomography
  • liquid chromatography
  • radiation therapy
  • gold nanoparticles
  • solar cells