Thermo-responsive aqueous two-phase system for two-level compartmentalization.
Huanqing CuiYage ZhangSihan LiuYang CaoQingming MaYuan LiuHaisong LinChang LiYang XiaoSammer Ul HassanHo-Cheung ShumPublished in: Nature communications (2024)
Hierarchical compartmentalization responding to changes in intracellular and extracellular environments is ubiquitous in living eukaryotic cells but remains a formidable task in synthetic systems. Here we report a two-level compartmentalization approach based on a thermo-responsive aqueous two-phase system (TR-ATPS) comprising poly(N-isopropylacrylamide) (PNIPAM) and dextran (DEX). Liquid membraneless compartments enriched in PNIPAM are phase-separated from the continuous DEX solution via liquid-liquid phase separation at 25 °C and shrink dramatically with small second-level compartments generated at the interface, resembling the structure of colloidosome, by increasing the temperature to 35 °C. The TR-ATPS can store biomolecules, program the spatial distribution of enzymes, and accelerate the overall biochemical reaction efficiency by nearly 7-fold. The TR-ATPS inspires on-demand, stimulus-triggered spatiotemporal enrichment of biomolecules via two-level compartmentalization, creating opportunities in synthetic biology and biochemical engineering.