Login / Signup

Hydrogen Shifts in Aryl Radicals and Diradicals: The Role of m-Benzynes.

Simon LuoAriel J KuhnIoannina CastanoClaire CastroWilliam L Karney
Published in: The Journal of organic chemistry (2017)
Density functional and coupled cluster results are presented for hydrogen shifts in radicals derived from polycyclic aromatic hydrocarbons (PAHs) and for rearrangement mechanisms for several phenylenes. RCCSD(T)/cc-pVDZ//UBLYP/cc-pVDZ free energy barriers for 1,4-H shifts at 298 K are consistently predicted to be ca. 25 kcal/mol, whereas barriers for 1,5- and 1,6-shifts range from 6 to 28 kcal/mol. The barriers correlate reasonably well with the distance from the radical center to the shifting hydrogen in the reactant. Proposed mechanisms (via diradical intermediates) of known rearrangements of linear [3]phenylene, benzo[b]biphenylene, and angular [4]phenylene have BD(T)/cc-pVDZ//(U)BLYP/cc-pVDZ computed barriers of 74-82 kcal/mol, consistent with pyrolysis temperatures of 900 to 1100 °C. Hydrogen shift reactions in most of the aryl diradicals arising from phenylenes produce m-benzyne intermediates which, despite being 8-15 kcal/mol more stable than other diradicals involved in the pathways, do not significantly lower the computed overall free energies of activation.
Keyphrases
  • polycyclic aromatic hydrocarbons
  • visible light
  • computed tomography
  • magnetic resonance
  • diffusion weighted imaging
  • risk assessment
  • density functional theory
  • drinking water