Green Synthesis of CoZn-Based Metal-Organic Framework (CoZn-MOF) from Waste Polyethylene Terephthalate Plastic As a High-Performance Anode for Lithium-Ion Battery Applications.
Yaxin WangKong MengHuimin WangYongheng SiKun BaiShaorui SunPublished in: ACS applied materials & interfaces (2023)
The recycling of discarded polyethylene terephthalate (PET) plastics produced metal-organic frameworks can effectively minimize environmental pollution and promote sustainable economic development. In this study, we developed a method using NaOH in alcohol and ether solvent environments to degrade PET plastics for synthesizing terephthalic acid. The method achieved a 97.5% degradation rate of PET plastics under a reaction temperature of 80 °C for 60 min. We used terephthalic acid as a ligand from the degradation products to successfully synthesize two types of monometallic and bimetallic CoZn-MOF materials. We investigated the impact of different metal centers and solvents on the electrochemical performance of the MOF materials. The result showed that the MOF-DMF/H 2 O material maintained a specific capacity of 1485.5 mAh g -1 after 100 cycles at a current density of 500 mA g -1 , demonstrating excellent rate capability and cycling stability. In addition, our finding showed that the performance difference might be attributed to the synergistic effect of bimetallic Co 2+ and Zn 2+ in MOF-DMF/H 2 O, rapid lithium-ion diffusion and electron transfer rates, and the absence of coordinating solvents. Additionally, the non-in situ X-ray powder diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analysis results showed that lithium storage in the MOF-DMF/H 2 O electrode mainly depended on the aromatic C6 ring and carboxylate portions of the organic ligands in different charge and discharge states. Lithium ions can be reversibly inserted/removed into/from the electrode material. The physical adsorption on the MOF surface through electrostatic interactions enhanced both capacity and cycling stability. This research provides valuable insight for mitigating solid waste pollution, promoting sustainable economic development, and advancing the extensive applications of MOF materials in lithium-ion batteries.
Keyphrases
- metal organic framework
- solid state
- heavy metals
- ionic liquid
- high resolution
- electron transfer
- computed tomography
- risk assessment
- positron emission tomography
- pet ct
- human health
- mental health
- magnetic resonance imaging
- life cycle
- pet imaging
- particulate matter
- high intensity
- health risk assessment
- drug delivery
- molecular dynamics simulations
- molecularly imprinted
- quantum dots
- water quality
- drinking water
- contrast enhanced