Login / Signup

Binary Strengthening and Toughening of MXene/Cellulose Nanofiber Composite Paper with Nacre-Inspired Structure and Superior Electromagnetic Interference Shielding Properties.

Wen-Tao CaoFei-Fei ChenYing-Jie ZhuYong-Gang ZhangYing-Ying JiangMing-Guo MaFeng Chen
Published in: ACS nano (2018)
With the growing popularity of electrical communication equipment, high-performance electromagnetic interference (EMI) shielding materials are widely used to deal with radiation pollution. However, the large thickness and poor mechanical properties of many EMI shielding materials usually limit their applications. In this study, ultrathin and highly flexible Ti3C2T x (d-Ti3C2T x, MXene)/cellulose nanofiber (CNF) composite paper with a nacre-like lamellar structure is fabricated via a vacuum-filtration-induced self-assembly process. By the interaction between one-dimensional (1D) CNFs and two-dimensional (2D) d-Ti3C2T x MXene, the binary strengthening and toughening of the nacre-like d-Ti3C2T x/CNF composite paper has been successfully achieved, leading to high tensile strength (up to 135.4 MPa) and fracture strain (up to 16.7%), as well as excellent folding endurance (up to 14 260 times). Moreover, the d-Ti3C2T x/CNF composite paper exhibits high electrical conductivity (up to 739.4 S m-1) and excellent specific EMI shielding efficiency (up to 2647 dB cm2 g-1) at an ultrathin thickness (minimum thickness 47 μm). The nacre-inspired strategy in this study offers a promising approach for the design and preparation of the strong integrated and flexible MXene/CNF composite paper, which may be applied in various fields such as flexible wearable devices, weapon equipment, and robot joints.
Keyphrases