Toward Enhancing Performance of Electromagnetic Wave Absorption for Conductive Metal-Organic Frameworks: Nanostructure Engineering or Crystal Morphology Controlling.
Xueling WangXuan ZhangAining HeJing GuoZhi-Liang LiuPublished in: Inorganic chemistry (2024)
Conductive metal-organic frameworks (cMOFs), which have high porosity and intrinsic electron conductivity, are regarded as ideal candidates for electromagnetic wave (EMW) absorption materials. Controlling the nanostructure of absorbers may be one of the effective strategies to improve the electromagnetic wave (EMW) absorption performance. Herein, a series of conductive Cu-HHTP MOFs (HHTP = 2,3,6,7,10,11-hexahydroxytriphenyl hydrates) with different nanostructures or crystal morphologies were successfully synthesized by using different structural inducers to regulate the changes in the morphology, thereby improving the EMW absorption performance. Specifically, when ammonia was used as an inducer, the obtained A-Cu-HHTP with a nanosheet structure exhibited excellent EMW absorption performance. The minimum reflection loss (RL min ) can reach -51.08 dB at 7.25 GHz with a thickness of 4.4 mm, and the maximum effective absorption bandwidth (EAB) can cover 5.73 GHz at 2.5 mm. The influence of the nanostructures of the cMOFs on the dielectric and EMW absorption performance was clarified. The nanosheet structure of A-Cu-HHTP increases its specific surface area, which expands multiple scattering and reflection paths of incident EMW; Meanwhile, the unique structure facilitates the formation of more heterogeneous interfaces, optimizing impedance matching. The significant improvement in EMW performance is mainly attributed to multiple reflections and scattering as well as impedance matching. This work not only provides a simple and effective strategy for improving electromagnetic wave absorption performance but also offers guidelines for preparing morphology functional cMOF materials.