Mitochondrial fusion and fission are required for proper mitochondrial function and cell proliferation in fission yeast.
Fenfen DongMengdan ZhuFan ZhengChuanhai FuPublished in: The FEBS journal (2021)
Mitochondria form a branched tubular network in many types of cells, depending on a balance between mitochondrial fusion and fission. How mitochondrial fusion and fission are involved in regulating mitochondrial function and cell proliferation is not well understood. Here, we dissected the roles of mitochondrial fusion and fission in mitochondrial function and cell proliferation in fission yeast. We examined mitochondrial membrane potential by staining cells with DiOC6 and assessed mitochondrial respiration by directly measuring oxygen consumption of cells with a dissolved oxygen respirometer. We found that defects in mitochondrial fission or fusion reduce mitochondrial membrane potential and compromise mitochondrial respiration while the absence of both mitochondrial fusion and fission restores wild type-like respiration, normal membrane potential, and tubular networks of mitochondria. Moreover, we found that the absence of either mitochondrial fission or fusion prolongs the cell cycle and that the absence of both mitochondrial fusion and fission significantly delays cell cycle progression after nitrogen replenishment. The prolonged/delayed cell cycle is likely due to the deregulation of Cdc2 activation. Hence, our work not only establishes an intimate link between mitochondrial morphology and function but also underscores the importance of mitochondrial dynamics in regulating the cell cycle.