Login / Signup

Quantifying Liver Heterogeneity via R2*-MRI with Super-Paramagnetic Iron Oxide Nanoparticles (SPION) to Characterize Liver Function and Tumor.

Danny LeeJason SohnAlexander Kirichenko
Published in: Cancers (2022)
The use of super-paramagnetic iron oxide nanoparticles (SPIONs) as an MRI contrast agent (SPION-CA) can safely label hepatic macrophages and be localized within hepatic parenchyma for T2*- and R2*-MRI of the liver. To date, no study has utilized the R2*-MRI with SPIONs for quantifying liver heterogeneity to characterize functional liver parenchyma (FLP) and hepatic tumors. This study investigates whether SPIONs enhance liver heterogeneity for an auto-contouring tool to identify the voxel-wise functional liver parenchyma volume (FLPV). This was the first study to directly evaluate the impact of SPIONs on the FLPV in R2*-MRI for 12 liver cancer patients. By using SPIONs, liver heterogeneity was improved across pre- and post-SPION MRI sessions. On average, 60% of the liver [range 40-78%] was identified as the FLPV in our auto-contouring tool with a pre-determined threshold of the mean R2* of the tumor and liver. This method performed well in 10 out of 12 liver cancer patients; the remaining 2 needed a longer echo time. These results demonstrate that our contouring tool with SPIONs can facilitate the heterogeneous R2* of the liver to automatically characterize FLP. This is a desirable technique for achieving more accurate FLPV contouring during liver radiation treatment planning.
Keyphrases
  • magnetic resonance imaging
  • contrast enhanced
  • computed tomography
  • single cell
  • weight loss
  • high resolution
  • mass spectrometry
  • radiation induced