Login / Signup

Solar radiation and the validity of infrared tympanic temperature during exercise in the heat.

Hidenori OtaniMitsuharu KayaAkira TamakiYuri HosokawaJason K W Lee
Published in: International journal of biometeorology (2019)
We investigated the validity of infrared tympanic temperature (IR-Tty) during exercise in the heat with variations in solar radiation. Eight healthy males completed stationary cycling trials at 70% peak oxygen uptake until exhaustion in an environmental chamber maintained at 30°C with 50% relative humidity. Three solar radiation conditions, 0, 250 and 500 W/m2, were tested using a ceiling-mounted solar simulator (metal-halide lamps) over a 3 × 2 m irradiated area. IR-Tty and rectal temperature (Tre) were similar before and during exercise in each trial (P > 0.05). Spearman's rank correlation coefficient (rs) demonstrated very strong (250 W/m2, rs = 0.87) and strong (0 W/m2, rs = 0.73; 500 W/m2, rs = 0.78) correlations between IR-Tty and Tre in all trials (P < 0.001). A Bland-Altman plot showed that mean differences (SD; 95% limits of agreement; root mean square error) between IR-Tty and Tre were - 0.11°C (0.46; - 1.00 to 0.78°C; 0.43 ± 0.16°C) in 0 W/m2, - 0.13°C (0.32; - 0.77 to 0.50°C; 0.32 ± 0.10°C) in 250 W/m2 and - 0.03°C (0.60; - 1.21 to 1.14°C; 0.46 ± 0.27°C) in 500 W/m2. A positive correlation was found in 500 W/m2 (rs = 0.51; P < 0.001) but not in 250 W/m2 (rs = 0.04; P = 0.762) and 0 W/m2 (rs = 0.04; P = 0.732), indicating a greater elevation in IR-Tty than Tre in 500 W/m2. Percentage of target attainment within ± 0.3°C between IR-Tty and Tre was higher in 250 W/m2 (100 ± 0%) than 0 (93 ± 7%) and 500 (90 ± 10%; P < 0.05) W/m2. IR-Tty is acceptable for core temperature monitoring during exercise in the heat when solar radiation is ≤ 500 W/m2, and its accuracy increases when solar radiation is 250 W/m2 under our study conditions.
Keyphrases
  • high intensity
  • physical activity
  • clinical trial
  • resistance training
  • computed tomography
  • study protocol
  • high resolution
  • climate change
  • open label
  • atomic force microscopy
  • high speed
  • contrast enhanced