Enantioselective Bioactivity, Toxicity, and Degradation in Vegetables and Soil of Chiral Fungicide Mandipropamid.
Jing ZhangQiqi WuYanru ZhongZhen WangZongzhe HeYanqing ZhangMinghua WangPublished in: Journal of agricultural and food chemistry (2021)
Mandipropamid (MDP) is a widely used chiral fungicide to control oomycete pathogens with two enantiomers. In this study, the enantioselective bioactivity, toxicity, and degradation of MDP were investigated for the first time. The bioactivity of S-MDP was 118-592 times higher than that of R-MDP and 1.14-1.67 times higher than that of Rac-MDP against six phytopathogens. Molecular docking found that S-MDP formed a strong halogen bond with HIS 693 of cellulose synthase and possessed a lower binding energy, which validated the results of the bioactivity assay. S-MDP showed lower toxicity toward Spirodela polyrhiza, while it exhibited higher toxicity in Danio rerio embryo and larva. S-MDP preferentially degraded in cowpea and pepper, while R-MDP preferentially degraded in soil. There is no significant difference between the two enantiomers in the toxicity of adult D. rerio and in cucumber degradation. Therefore, the development of the S-enantiomer was considered as a better option to exhibit high efficiency, which could reduce the residual risk of the pesticide and ensure environmental safety.