Login / Signup

Thermal performance curves for aerobic scope and specific dynamic action in a sexually dimorphic piscivore: implications for a warming climate.

Christian J BihunErin M C StewartEmily R LechnerJacob W BrownscombeGraham D Raby
Published in: The Journal of experimental biology (2024)
Digestion can make up a substantial proportion of animal energy budgets, yet our understanding of how it varies with sex, body mass, and ration size is limited. A warming climate may have consequences on animal growth and feeding dynamics that will differentially impact individuals in their ability to efficiently acquire and assimilate meals. Many species, such as walleye (Sander vitreus), exhibit sexual size dimorphism (SSD), whereby one sex is larger than the other, suggesting sex-differences in energy acquisition and/or expenditure. Here we present the first thorough estimates of specific dynamic action (SDA) in adult walleye using intermittent-flow respirometry. We fed male (n=14) and female (n=9) walleye two ration sizes; 2% and 4% of individual body weight, over a range of temperatures from 2 - 20°C. SDA was shorter in duration and reached higher peak rates of oxygen consumption with increasing temperatures. Peak SDA increased with ration size and decreased with body mass. The proportion of digestible energy lost to SDA (i.e., the SDA coefficient) was consistent at 6% and was unrelated to temperature, body mass, sex, or ration size. Our findings suggest that sex has a negligible role in shaping SDA, nor is SDA a contributor to SSD for this species. Standard and maximum metabolic rates were similar between sexes but maximum metabolic rate decreased drastically with body mass. Large fish, which are important for population growth due to reproductive hyperallometry, may therefore face a bioenergetic disadvantage and struggle most to perform optimally in future, warmer waters.
Keyphrases
  • body weight
  • climate change
  • high intensity
  • magnetic resonance
  • mental health
  • computed tomography
  • young adults
  • current status
  • diffusion weighted imaging
  • genetic diversity
  • contrast enhanced