Login / Signup

Low-Background Acyl-Biotinyl Exchange Largely Eliminates the Coisolation of Non-S-Acylated Proteins and Enables Deep S-Acylproteomic Analysis.

Bo ZhouYang WangYiwu YanJavier MariscalDolores Di VizioMichael R FreemanWei Yang
Published in: Analytical chemistry (2019)
Protein S-acylation (also called palmitoylation) is a common post-translational modification whose deregulation plays a key role in the pathogenesis of many diseases. Acyl-biotinyl exchange (ABE), a widely used method for the enrichment of S-acylated proteins, has the potential of capturing the entire S-acylproteome in any type of biological sample. Here, we showed that current ABE methods suffer from a high background arising from the coisolation of non-S-acylated proteins. The background can be substantially reduced by an additional blockage of residual free cysteine residues with 2,2'-dithiodipyridine prior to the biotin-HPDP reaction. Coupling the low-background ABE (LB-ABE) method with label-free proteomics, 2 895 high-confidence candidate S-acylated proteins (including 1 591 known S-acylated proteins) were identified from human prostate cancer LNCaP cells, representing so-far the largest S-acylproteome data set identified in a single study. Immunoblotting analysis confirmed the S-acylation of five known and five novel prostate cancer-related S-acylated proteins in LNCaP cells and suggested that their S-acylation levels were about 0.6-1.8%. In summary, the LB-ABE method largely eliminates the coisolation of non-S-acylated proteins and enables deep S-acylproteomic analysis. It is expected to facilitate a much more comprehensive and accurate quantification of S-acylproteomes than previous ABE methods.
Keyphrases
  • prostate cancer
  • induced apoptosis
  • label free
  • mass spectrometry
  • radical prostatectomy
  • machine learning
  • risk assessment
  • small molecule
  • data analysis
  • room temperature