Recent progress in on-surface synthesis of nanoporous graphene materials.
Tianchen QinTao WangJun-Fa ZhuPublished in: Communications chemistry (2024)
Nanoporous graphene (NPG) materials are generated by removing internal degree-3 vertices from graphene and introducing nanopores with specific topological structures, which have been widely explored and exploited for applications in electronic devices, membranes, and energy storage. The inherent properties of NPGs, such as the band structures, field effect mobilities and topological properties, are crucially determined by the geometric structure of nanopores. On-surface synthesis is an emerging strategy to fabricate low-dimensional carbon nanostructures with atomic precision. In this review, we introduce the progress of on-surface synthesis of atomically precise NPGs, and classify NPGs from the aspects of element types, topological structures, pore shapes, and synthesis strategies. We aim to provide a comprehensive overview of the recent advancements, promoting interdisciplinary collaboration to further advance the synthesis and applications of NPGs.