Login / Signup

β-Arrestin-dependent ERK signaling reduces anxiety-like and conditioned fear-related behaviors in mice.

Mee Jung KoTerrance ChiangArbaaz A MukadamGrace E MuliaAnna M GutridgeAngel LinJulia A ChesterRichard M Van Rijn
Published in: Science signaling (2021)
G protein-coupled receptors (GPCRs) are implicated in the regulation of fear and anxiety. GPCR signaling involves canonical G protein pathways but can also engage downstream kinases and effectors through scaffolding interactions mediated by β-arrestin. Here, we investigated whether β-arrestin signaling regulates anxiety-like and fear-related behavior in mice in response to activation of the GPCR δ-opioid receptor (δOR or DOR). Administration of β-arrestin-biased δOR agonists to male C57BL/6 mice revealed β-arrestin 2-dependent activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in the dorsal hippocampus and amygdala and β-arrestin 1-dependent activation of ERK1/2 in the nucleus accumbens. In mice, β-arrestin-biased agonist treatment was associated with reduced anxiety-like and fear-related behaviors, with some overlapping and isoform-specific input. In contrast, applying a G protein-biased δOR agonist decreased ERK1/2 activity in all three regions as well as the dorsal striatum and was associated with increased fear-related behavior without effects on baseline anxiety. Our results indicate a complex picture of δOR neuromodulation in which β-arrestin 1- and 2-dependent ERK signaling in specific brain subregions suppresses behaviors associated with anxiety and fear and opposes the effects of G protein-biased signaling. Overall, our findings highlight the importance of noncanonical β-arrestin-dependent GPCR signaling in the regulation of these interrelated emotions.
Keyphrases