The Serum BDNF Level Offers Minimum Predictive Value for Motor Function Recovery After Stroke.
Wenshu LuoTao LiuShanshan LiHongmei WenFenghua ZhouRoss ZafonteXun LuoMinghzu XuRandie Black-SchafferLisa J WoodYulong WangQing Mei WangPublished in: Translational stroke research (2018)
Brain-derived neurotrophic factor (BDNF) plays an important role in neuroplasticity and neurogenesis following ischemic and non-ischemic brain injury. The predictive value of BDNF for short-term outcome after stroke is controversial. The objective of this study was to investigate the relationship among serum BDNF level, fractional anisotropy (FA), and functional outcome during post-acute stroke rehabilitation. Serum BDNF levels were measured on admission to an acute inpatient rehabilitation hospital. The primary functional outcome was functional independence measure (FIM) motor subscore at discharge. The secondary outcome measures were FIM total score at discharge, FIM motor subscore on admission, length of stay in the hospital, and discharge destination. We investigated the relationship among the level of serum BDNF and FA as well as functional outcome measures. Three hundred forty-eight consecutive stroke subjects were included in the analysis. Serum BDNF levels on admission were statistically but not clinically correlated with FIM motor subscore at discharge (r = 0.173, P = 0.001) and FIM total score at discharge (r = 0.155, P = 0.004). Receiver operating characteristic (ROC) analysis of BDNF as a predictor for FIM motor subscore improvement showed low accuracy of prediction with an area under the curve (AUC) of 0.581 (P = 0.026). Serum BDNF significantly correlated with FA in the high FIM motor group (n = 10, r = 0.609, P = 0.031) but not in the low FIM motor group (n = 11, r = - 0.132, P = 0.349). The serum BDNF level alone offers minimum predictive value for recovery of motor function during post-acute rehabilitation. Our findings suggest that serum BDNF level may be correlated with FA.