Login / Signup

Analytic Gradients for Equation-of-Motion Coupled Cluster with Single, Double, and Perturbative Triple Excitations.

Tingting ZhaoDevin A Matthews
Published in: Journal of chemical theory and computation (2024)
Understanding the process of molecular photoexcitation is crucial in various fields, including drug development, materials science, photovoltaics, and more. The electronic vertical excitation energy is a critical property, for example in determining the singlet-triplet gap of chromophores. However, a full understanding of excited-state processes requires additional explorations of the excited-state potential energy surface and electronic properties, which is greatly aided by the availability of analytic energy gradients. Owing to its robust high accuracy over a wide range of chemical problems, equation-of-motion coupled cluster with single and double excitations (EOM-CCSD) is a powerful method for predicting excited-state properties, and the implementation of analytic gradients of many EOM-CCSD variants (excitation energies, ionization potentials, electron attachment energies, etc.) along with numerous successful applications highlights the flexibility of the method. In specific cases where a higher level of accuracy is needed or in more complex electronic structures, the inclusion of triple excitations becomes essential, for example, in the EOM-CCSD* approach of Saeh and Stanton. In this work, we derive and implement for the first time the analytic gradients of EOMEE-CCSD*, which also provides a template for analytic gradients of related excited-state methods with perturbative triple excitations. The capabilities of analytic EOMEE-CCSD* gradients are illustrated by several representative examples.
Keyphrases
  • energy transfer
  • primary care
  • mental health
  • public health
  • density functional theory
  • gene expression
  • copy number
  • high resolution
  • mass spectrometry
  • climate change
  • tandem mass spectrometry