Plant growth regulators: a sustainable approach to combat pesticide toxicity.
Sadaf JanRattandeep SinghRenu BhardwajParvaiz AhmadDhriti KapoorPublished in: 3 Biotech (2020)
Pesticides are chemical substances intended for preventing or controlling pests. These are toxic substances which contaminate soil, water bodies and vegetative crops. Excessive use of pesticides may cause destruction of biodiversity. In plants, pesticides lead to oxidative stress, inhibition of physiological and biochemical pathways, induce toxicity, impede photosynthesis and negatively affect yield of crops. Increased production of reactive oxygen species like superoxide radicals, O- 2 hydrogen peroxide, H2O2; singlet oxygen, O2; hydroxyl radical, OH-; and hydroperoxyl radical HO2-, causes damage to protein, lipid, carbohydrate and DNA within plants. Plant growth regulators (PGR) are recognized for promoting growth and development under optimal as well as stress conditions. PGR combat adverse effect by acting as chemical messenger and under complex regulation, enable plants to survive under stress conditions. PGR mediate various physiological and biochemical responses, thereby reducing pesticide-induced toxicity. Exogenous applications of PGRs, such as brassinosteroid, cytokinins, salicylic acid, jasmonic acid, etc., mitigate pesticide toxicity by stimulating antioxidant defense system and render tolerance towards stress conditions. They provide resistance against pesticides by controlling production of reactive oxygen species, nutrient homeostasis, increase secondary metabolite production, and trigger antioxidant mechanisms. These phytohormones protect plants against oxidative damage by activating mitogen-stimulated protein kinase cascade. Current study is based on reported research work that has shown the effect of PGR in promoting plant growth subjected to pesticide stress. The present review covers the aspects of pesticidal response of plants and evaluates the contribution of PGRs in mitigating pesticide-induced stress and increasing the tolerance of plants. Further, the study suggests the use of PGRs as a tool in mitigating effects of pesticidal stress together with improved growth and development.
Keyphrases
- oxidative stress
- plant growth
- risk assessment
- hydrogen peroxide
- reactive oxygen species
- diabetic rats
- stress induced
- high glucose
- dna damage
- emergency department
- induced apoptosis
- gas chromatography
- heat stress
- immune response
- ischemia reperfusion injury
- anti inflammatory
- mass spectrometry
- inflammatory response
- body mass index
- high resolution
- binding protein
- toll like receptor
- circulating tumor