Login / Signup

The population genetic test Tajima's D identifies genes encoding pathogen-associated molecular patterns and other virulence-related genes in Ralstonia solanacearum.

Noam Eckshtain-LeviAlexandra J WeisbergBoris A Vinatzer
Published in: Molecular plant pathology (2018)
The detection of pathogen-associated molecular patterns (PAMPs) by plant pattern recognition receptors (PRRs) is an essential part of plant immunity. Until recently, elf18, an epitope of elongation factor-Tu (EF-Tu), was the sole confirmed PAMP of Ralstonia solanacearum, the causal agent of bacterial wilt disease, limiting our understanding of R. solanacearum-plant interactions. Therefore, we set out to identify additional R. solanacearum PAMPs based on the hypothesis that genes encoding PAMPs are under selection to avoid recognition by plant PRRs. We calculated Tajima's D, a population genetic test statistic which identifies genes that do not evolve neutrally, for 3003 genes conserved in 37 R. solanacearum genomes. The screen flagged 49 non-neutrally evolving genes, including not only EF-Tu but also the gene for Cold Shock Protein C, which encodes the PAMP csp22. Importantly, an R. solanacearum allele of this PAMP was recently identified in a parallel independent study. Genes coding for efflux pumps, some with known roles in virulence, were also flagged by Tajima's D. We conclude that Tajima's D is a straightforward test to identify genes encoding PAMPs and other virulence-related genes in plant pathogen genomes.
Keyphrases