Login / Signup

Extrinsic grouping factors in motion-induced blindness.

Dina DevyatkoAlexander Pastukhov
Published in: PloS one (2018)
We investigated how various grouping factors altered subjective disappearances of the individual targets in the motion-induced blindness display. The latter relies on a moving mask to render highly salient static targets temporarily subjectively invisible. Specifically, we employed two extrinsic grouping factors, the connectedness and the common region, and examined whether their presence would make targets more resilient against the suppression. In addition, we investigated whether the presence of an illusory Kanizsa triangle would affect the suppression of the inducing Pac-Man elements. We quantified the perceptual dynamics using the proportion of the disappearance time (this indicates whether targets became more resilient against the suppression), and the proportion of simultaneous disappearance and reappearance events (characterizes the tendency for the targets to disappear or reappear as a group). We report that a single mask that encompassed all targets (a common region grouping) significantly increased the proportion of simultaneous disappearance and reappearance events, but had no effect on the proportion of the disappearance time. In contrast, a line that connected two targets significantly decreased the total invisibility time, but had no impact on the simultaneity of the disappearance and reappearance events. We found no statistically significant effect of the presence of the illusory Kanizsa triangle on either measure. Finally, we found no interaction either between the common region and the connectedness or between the common region and the presence of the illusory Kanizsa triangle. Our results indicate that extrinsic grouping factors might influence the perception differently than the intrinsic ones and highlight the importance of using several measures to characterize the perceptual dynamics, as various grouping factors might affect it differentially.
Keyphrases
  • magnetic resonance
  • working memory
  • high glucose
  • diabetic rats
  • depressive symptoms
  • oxidative stress
  • mass spectrometry
  • atomic force microscopy
  • single molecule
  • stress induced