PSMA-Targeted 2-Deoxyglucose-Based Dendrimer Nanomedicine for the Treatment of Prostate Cancer.
Anu RaniAnunay James PulukuriJing WeiAnubhav DhullAqib Iqbal DarRishi SharmaNooshin MesbahiEmily A SavoyHosog YoonBoyang Jason WuClifford E BerkmanAnjali SharmaPublished in: Biomacromolecules (2024)
Prostate cancer (PC) is the fifth leading cause of cancer-related deaths among men worldwide. Prostate-specific membrane antigen (PSMA), a molecular target of PC, is clinically used for the treatment and diagnosis of PC using radioligand approaches. However, no PSMA-based chemotherapies have yet been approved by the FDA. Here, we present a novel therapeutic approach using PSMA-targeted 2-deoxyglucose-dendrimer (PSMA-2DG-D) for targeted delivery of a potent tyrosine kinase inhibitor, cabozantinib (Cabo), selectively to PC cells. PSMA-2DG-D demonstrates intracellular localization in PSMA (+) PC cells through PSMA-mediated internalization. This PSMA-specific targeting translates to enhanced efficacy of Cabo compared to the free drug when conjugated to PSMA-2DG-D. Furthermore, systemically administered fluorescently labeled PSMA-2DG-D-Cy5 specifically targets PSMA (+) tumors with minimal off-target accumulation in the PC3-PIP tumor xenograft mouse model. This demonstrates that the PSMA-2DG-D platform is a promising new delivery system for potent chemotherapeutics, where systemic side effects are a significant concern.