Login / Signup

A Nearly Packaging-Free Design Paradigm for Light, Powerful, and Energy-Dense Primary Microbatteries.

Xiujun YueAlissa C JohnsonSungbong KimRyan R KohlmeyerArghya PatraJessica GrzybAkaash PadmanabhaMin WangZhimin JiangPengcheng SunChadd T KigginsMehmet N AtesSonika V SinghEvan M BealeMark DarouxAaron J BlakeJohn B CookPaul V BraunJames H Pikul
Published in: Advanced materials (Deerfield Beach, Fla.) (2021)
Billions of internet connected devices used for medicine, wearables, and robotics require microbattery power sources, but the conflicting scaling laws between electronics and energy storage have led to inadequate power sources that severely limit the performance of these physically small devices. Reported here is a new design paradigm for primary microbatteries that drastically improves energy and power density by eliminating the vast majority of the packaging and through the use of high-energy-density anode and cathode materials. These light (50-80 mg) and small (20-40 µL) microbatteries are enabled though the electroplating of 130 µm-thick 94% dense additive-free and crystallographically oriented LiCoO2 onto thin metal foils, which also act as the encapsulation layer. These devices have 430 Wh kg-1 and 1050 Wh L-1 energy densities, 4 times the energy density of previous similarly sized microbatteries, opening up the potential to power otherwise unpowerable microdevices.
Keyphrases
  • drinking water
  • healthcare
  • ion batteries
  • reduced graphene oxide
  • gold nanoparticles
  • social media
  • human health