Cholinergic modulation shifts the response of CA1 pyramidal cells to depolarizing ramps via TRPM4 Channels with potential implications for place field firing.
Crescent L CombeCarol M UpchurchCarmen C CanavierSonia GaspariniPublished in: eLife (2023)
A synergistic combination of in vitro electrophysiology and multicompartmental modeling of rat CA1 pyramidal neurons identified TRPM4 channels as major drivers of cholinergic modulation of the firing rate during a triangular current ramp, which emulates the bump in synaptic input received while traversing the place field. In control, fewer spikes at lower frequencies are elicited on the down-ramp compared to the up-ramp due to long-term inactivation of the Na V channel. The cholinergic agonist carbachol (CCh) removes or even reverses this spike rate adaptation, causing more spikes to be elicited on the down-ramp than the up-ramp. CCh application during Schaffer collateral stimulation designed to simulate a ramp produces similar shifts in the center of mass of firing to later in the ramp. The non-specific TRP antagonist flufenamic acid and the TRPM4-specific blockers CBA and 9-phenanthrol, but not the TRPC-specific antagonist SKF96365, reverse the effect of CCh; this implicates the Ca 2+ -activated nonspecific cation current, I CAN , carried by TRPM4 channels. The cholinergic shift of the center of mass of firing is prevented by strong intracellular Ca 2+ buffering but not by antagonists for IP 3 and ryanodine receptors, ruling out a role for known mechanisms of release from intracellular Ca 2+ stores. Pharmacology combined with modeling suggest that [Ca 2+ ] in a nanodomain near the TRPM4 channel is elevated through an unknown source that requires both muscarinic receptor activation and depolarization-induced Ca 2+ influx during the ramp. Activation of the regenerative inward TRPM4 current in the model qualitatively replicates and provides putative underlying mechanisms for the experimental observations.