Login / Signup

Advancements in Perovskite Nanocrystal Stability Enhancement: A Comprehensive Review.

Xuewen LiuEun-Cheol Lee
Published in: Nanomaterials (Basel, Switzerland) (2023)
Over the past decade, perovskite technology has been increasingly applied in solar cells, nanocrystals, and light-emitting diodes (LEDs). Perovskite nanocrystals (PNCs) have attracted significant interest in the field of optoelectronics owing to their exceptional optoelectronic properties. Compared with other common nanocrystal materials, perovskite nanomaterials have many advantages, such as high absorption coefficients and tunable bandgaps. Owing to their rapid development in efficiency and huge potential, perovskite materials are considered the future of photovoltaics. Among different types of PNCs, CsPbBr 3 perovskites exhibit several advantages. CsPbBr 3 nanocrystals offer a combination of enhanced stability, high photoluminescence quantum yield, narrow emission bandwidth, tunable bandgap, and ease of synthesis, which distinguish them from other PNCs, and make them suitable for various applications in optoelectronics and photonics. However, PNCs also have some shortcomings: they are highly susceptible to degradation caused by environmental factors, such as moisture, oxygen, and light, which limits their long-term performance and hinders their practical applications. Recently, researchers have focused on improving the stability of PNCs, starting with the synthesis of nanocrystals and optimizing (i) the external encapsulation of crystals, (ii) ligands used for the separation and purification of nanocrystals, and (iii) initial synthesis methods or material doping. In this review, we discuss in detail the factors leading to instability in PNCs, introduce stability enhancement methods for mainly inorganic PNCs mentioned above, and provide a summary of these approaches.
Keyphrases
  • room temperature
  • solar cells
  • energy transfer
  • ionic liquid
  • quantum dots
  • high efficiency
  • light emitting
  • sensitive detection
  • liquid chromatography
  • monte carlo