Login / Signup

Long Noncoding RNA CRYBG3 Blocks Cytokinesis by Directly Binding G-Actin.

Hailong PeiWentao HuZiyang GuoHuaiyuan ChenJi MaWeidong MaoBingyan LiAiqing WangJianmei WanJian ZhangJing NieGuangming ZhouTom K Hei
Published in: Cancer research (2018)
The dynamic interchange between monomeric globular actin (G-actin) and polymeric filamentous actin filaments (F-actin) is fundamental and essential to many cellular processes, including cytokinesis and maintenance of genomic stability. Here, we report that the long noncoding RNA LNC CRYBG3 directly binds G-actin to inhibit its polymerization and formation of contractile rings, resulting in M-phase cell arrest. Knockdown of LNC CRYBG3 in tumor cells enhanced their malignant phenotypes. Nucleotide sequence 228-237 of the full-length LNC CRYBG3 and the ser14 domain of β-actin is essential for their interaction, and mutation of either of these sites abrogated binding of LNC CRYBG3 to G-actin. Binding of LNC CRYBG3 to G-actin blocked nuclear localization of MAL, which consequently kept serum response factor (SRF) away from the promoter region of several immediate early genes, including JUNB and Arp3, which are necessary for cellular proliferation, tumor growth, adhesion, movement, and metastasis. These findings reveal a novel lncRNA-actin-MAL-SRF pathway and highlight LNC CRYBG3 as a means to block cytokinesis and to treat cancer by targeting the actin cytoskeleton.Significance: Identification of the long noncoding RNA LNC CRYBG3 as a mediator of microfilament disorganization marks it as a novel therapeutic antitumor strategy. Cancer Res; 78(16); 4563-72. ©2018 AACR.
Keyphrases