Login / Signup

High-performance organic light-emitting diodes comprising ultrastable glass layers.

Joan Ràfols-RibéPaul-Anton WillChristian HänischMarta Gonzalez-SilveiraSimone LenkJavier Rodríguez-ViejoSebastian Reineke
Published in: Science advances (2018)
Organic light-emitting diodes (OLEDs) are one of the key solid-state light sources for various applications including small and large displays, automotive lighting, solid-state lighting, and signage. For any given commercial application, OLEDs need to perform at their best, which is judged by their device efficiency and operational stability. We present OLEDs that comprise functional layers fabricated as ultrastable glasses, which represent the thermodynamically most favorable and, thus, stable molecular conformation achievable nowadays in disordered solids. For both external quantum efficiencies and LT70 lifetimes, OLEDs with four different phosphorescent emitters show >15% enhancements over their respective reference devices. The only difference to the latter is the growth condition used for ultrastable glass layers that is optimal at about 85% of the materials' glass transition temperature. These improvements are achieved through neither material refinements nor device architecture optimization, suggesting a general applicability of this concept to maximize the OLED performance, no matter which specific materials are used.
Keyphrases
  • solid state
  • solar cells
  • molecular dynamics
  • water soluble
  • molecular dynamics simulations
  • light emitting
  • single molecule
  • crystal structure