Login / Signup

Probabilistic Model of Transition between Categories of Glucose Profiles in Patients with Type 1 Diabetes Using a Compositional Data Analysis Approach.

Lyvia BiagiArthur BertachiMarga GiménezIgnacio Conget DonloJorge BondiaJosep Antoni Martín-FernándezJosep Vehí
Published in: Sensors (Basel, Switzerland) (2021)
The time spent in glucose ranges is a common metric in type 1 diabetes (T1D). As the time in one day is finite and limited, Compositional Data (CoDa) analysis is appropriate to deal with times spent in different glucose ranges in one day. This work proposes a CoDa approach applied to glucose profiles obtained from six T1D patients using continuous glucose monitor (CGM). Glucose profiles of 24-h and 6-h duration were categorized according to the relative interpretation of time spent in different glucose ranges, with the objective of presenting a probabilistic model of prediction of category of the next 6-h period based on the category of the previous 24-h period. A discriminant model for determining the category of the 24-h periods was obtained, achieving an average above 94% of correct classification. A probabilistic model of transition between the category of the past 24-h of glucose to the category of the future 6-h period was obtained. Results show that the approach based on CoDa is suitable for the categorization of glucose profiles giving rise to a new analysis tool. This tool could be very helpful for patients, to anticipate the occurrence of potential adverse events or undesirable variability and for physicians to assess patients' outcomes and then tailor their therapies.
Keyphrases