Login / Signup

Early land plants: Plentiful but neglected nutritional resources for herbivores?

Audrey DuhinRicardo A R MachadoTed C J TurlingsGregory Röder
Published in: Ecology and evolution (2022)
Plants and herbivores have been engaged in a co-evolutionary arms race for millions of years, during which plants evolved various defenses and other traits to cope with herbivores, whereas herbivores evolved traits to overcome the plants' resistance strategies. Herbivores may also avoid certain plants merely because these lack suitable nutrients for their development. Interestingly, the number of herbivores that attack individual early land plants like mosses and ferns is quite low. Among others, poor nutrient quality has been hypothesized to explain the apparent low herbivory pressure on such plants but still waits for scientific evidences. Here, the nutritive suitability of representative mosses and liverworts (bryophytes) and ferns (pteridophytes) for herbivores was investigated using feeding assays combined with quantifications of nutrients (proteins, amino acids, and sugars). Growth and survival of two polyphagous herbivores, a caterpillar and a snail, were monitored when fed on 15 species of bryophytes and pteridophytes, as well as on maize ( Zea mays , angiosperm) used as an external indicative nutritional resource. Overall, our results show that the poor performance of the herbivores on the studied early land plants is not correlated with nutritional quality. The growth and performance of snails and caterpillars fed with these plants were highly variable and independent of nutrient content. These findings arguably dismiss the poor nutrient quality hypothesis as the cause of herbivory deficit in bryophytes and pteridophytes. They suggest the possible presence of early resistance traits that have persisted all through the long evolutionary history of plant-herbivore interactions.
Keyphrases
  • genome wide
  • climate change
  • gene expression
  • magnetic resonance imaging
  • heavy metals
  • magnetic resonance
  • risk assessment
  • epithelial mesenchymal transition
  • amino acid
  • quality improvement
  • single cell
  • high speed