Login / Signup

Amplified Cell Cycle Genes Identified in High-Grade Serous Ovarian Cancer.

Karthik BalakrishnanYuanhong ChenJixin Dong
Published in: Cancers (2024)
The objective of this study was to identify differentially expressed genes and their potential influence on the carcinogenesis of serous-type ovarian cancer tumors. Serous cancer is an epithelial ovarian cancer subtype and is the most common type of ovarian cancer. Transcriptomic profiles of serous cancer and non-cancerous datasets were obtained from the Gene Expression Omnibus (GEO-NCBI). Differentially expressed genes were then derived from those profiles; the identified genes were consistently upregulated in three or more transcriptomic profiles. These genes were considered as the serous ovarian cancer gene set for further study. The serous gene set derived from the transcriptomic profiles was then evaluated for ontological functional analysis using the Molecular Signatures Database. Next, we examined the mutational impact of this serous gene set on the transcriptomic profile of high-grade serous ovarian (HGSO) adenocarcinoma using the cBioPortal database. Results from OncoPrint revealed that 26 genes were amplified in more than 5% of HGSO cancer patients. Interestingly, several of these genes are involved in cell cycle processes, including genes ATPase family AAA domain containing 2 (ATAD2), recQ-like helicase 4 (RECQL4), cyclin E1 (CCNE1), anti-silencing function 1B histone chaperone (ASF1B), ribonuclease H2 subunit A (RNASEH2A), structural maintenance of chromosome 4 (SMC4), cell division cycle associated 20 (CDC20), and cell division cycle associated 8 (CDCA8). The receiver operating characteristic (ROC) curve results also revealed higher specificity and sensitivity for this subtype of tumors. Furthermore, these genes may affect the recurrence of serous ovarian carcinogenesis. Overall, our analytical study identifies cell cycle-related genes that can potentially be targeted as diagnostic and prognostic markers for serous ovarian cancer.
Keyphrases