Three-Dimensional Fe,N-Decorated Carbon-Supported NiFeP Nanoparticles as an Efficient Bifunctional Catalyst for Rechargeable Zinc-O2 Batteries.
Shumaila IbraheemSiguo ChenJia LiWei LiXiaoyan GaoQingmei WangZidong WeiPublished in: ACS applied materials & interfaces (2018)
The electro-catalyzed oxygen reduction and evolution reactions (ORR/OER) are the key elements of many energy conversion systems, such as fuel cells, water electrolyzers, and rechargeable metal-air batteries. Structural design of durable non-noble nanomaterials as bifunctional OER/ORR catalysts is a major drawback to commercial applications. Herein, we exposed a strongly coupled hybrid material comprising of NiFeP-cubes nanoparticles supported on three-dimensional interconnected Fe,N-decorated carbon (3D-FeNC) as a robust bifunctional ORR/OER catalyst. The strongly coupled NiFeP@3D-FeNC catalyst shows better electron and mass transfer capability, exposure of abundant ORR/OER active sites on the surface, and strongly coupled effects. Accordingly, the as-prepared NiFeP@3D-FeNC catalyst exhibits robust ORR activity (half-wave potential of 0.84 V vs reversible hydrogen electrode) and OER performance (over-potential 0.25 V@10 mA cm-2) in alkaline media. Significantly, the oxygen electrode prepared from the NiFeP@3D-FeNC catalyst further demonstrated superior charge/discharge behavior and long-lasting rechargeability than the benchmark Pt/C + IrO2 catalyst in rechargeable zinc-O2 batteries. This approach opens up a new avenue for the synthesis and advanced the hybrid nanomaterials for various applications.